
AD-A252 267

Towards Intelligent Automated Forces For Simnet

Semi-Annual Report to the Office of Naval Research
for the Period 10/1191 - 3/3192

on Contract Number N00014-91-J-1624

Paul S. Rosenbloom, PID T IC Information Sciences Institute"ELECTE D Universityof Southern California.- -/ // / / / / /t
4676 Admiralty Wayf~ELCE nvestyo1SuhenCaiori 92- 16904

RE 2Marina del Rey, CA 90292

A June 5,1992

The research supported by this contract is focused on an initial investigation of the use of the
Soar architecture in constructing autonomous intelligent agents that can act as independent
players in multi-agent simulation environments, such as Simnet. The work is being pursued in
the context of a simplified battlefield environment called GridWorld, which was originally
developed at the Hughes Al Center, and then enhanced by us during the initial six months of this
contract. GridWorld provides a two-dimensional, multi-agent, real-time world in which both
space and time are represented as continuous quantities.

During the period covered by this report, we concentrated on two research activities: (1)
investigating the integration of cognitive and spatial reasoning in a range of safe-traversal
scenarios; and (2) extending GridWorld to allow multiple Soar-based agents to interact. The
following sections provide additional detail on these two activities.

Integrating Cognitive and Spatial Reasoning
One of the greatest strengths of an integrated Al architecture, such as Soar, is that it should be

able to facilitate the construction of agents that combine a wide range of knowledge and
reasoning methods. On the other hand, one of Soar's greatest weaknesses is its lack of any
demonstrable ability to use particular types of knowledge and reasoning, such as spatial
knowledge and reasoning, that are critical to effective agent performance in worlds such as
Simnet and GridWorld (or the real world, for that matter). Our goal for this segment of the effort
was therefore to understand how spatial reasoning should be done in Soar for the GridWorld.

Our focus here is not on inventing new more optimal algorithms for, for example, navigation.
There is already a strong research community focused on this, and it is not clear that Soar
provides us with much direct leverage there (except, perhaps, in terms of building highly flexible
knowledge-based navigational methods). Instead, we are focusing on the interactions between
various forms of spatial reasoning and the rest of the cognitive system. This is a topic that has
been little studied so far, and also one in which Soar can potentially provide great leverage.

To drive this effort we selected a class of safe-traversal tasks which stress a combination of
spatial and non-spatial cognition. The tasks all involve two agents - one friendly agent (referred
to as R2)and one hostile agent - in a two-dimensional world that include walls which block both
movement and vision (Figure 1). R2's task is to travel between two points in the world without
being caught. The hostile agent's task is to catch R2. Due to current limitations on the ability to
simultaneously deploy multiple Soar-based agents in the GridWorld (but see the next section),fThis do'um., has bee

:or public releas, and sale; its

92 6 0213 distribution is unljied.

only R2 is Soar based. The hostile agent is a simple stateless Lisp-based agent that wanders
around aimlessly1 until it sees R2, chases it until it catches it or can no longer see it, and wanders
aimlessly again if it can no longer see it.

log

. I
_________Accesion For

NTIS CRA&I
DTIC TAB
Uiiaanour~ced

- I Justificatior . .

n o - ;Sa-- ------ --.-.
R2'svmdoDai

N. Dist

IGO- IuI

1

4.v

Figure 1: A GridWorld configuration for the safe-traversal task.

R2 has been the focus of our development efforts during the period covered by this report. An
example trace of its current behavior can be seen in Figure 2. In this figure, R2 initially follows
a plan based on criteria of safety and length. Once it perceives the hostile agent, it reacts
immediately by starting to run away, while simultaneously selecting a hiding place (behind a
wall) and generating a plan by which to get there. Once safely in its hiding place, it replans a
route to its goal - possibly making use of rules learned during the original planning process -
and once more proceeds on its way.2

In general, R2 begins by planning a route from its initial position to its goal position (Figure
3). It does this with the aid of a map in which the walls have been used to guide the
decomposition of the world into rectangular regions of free space. The search for a path takes
these regions as primitive nodes, and heuristically looks for a short, safe path. Shortness is
determined by the obvious path-length metric. Safety is determined by a set of heuristics about
possible ambush points; that is, about ends of walls behind which R2 can't see. The search

'It follows a straight line until it nears a wall or an edge of a world, in which case it makes a random turn and
starts again in a straight line

2'he odd looking jog in the replanned path at around (200, 700) occurs because the safety criteria dictates
-'oiding proximity to the ends of walls behind which it can't see. Safety is discussed in more detail below.

2

1000

- I

R2s oa

700

40

90

90

0 log It Ie iHo si0 i
9 00 200 30 400 S00 0 700 80 800 19O0i

Figure 2: Behavioral trace of interactions between R2 and the hostile agent.

proceeds depth first, using a greedy heuristic based on distance to the goal to order the choices at
each point, and backtracking whenever either an unsafe node or a dead-end is reached. 3 In the
process, Soar's learning mechanism stores away new rules that capture the results of searching
this tree of paths.

It then follows this path until the hostile agent is detected. Immediately, a reactive behavior is
triggered off by a production sensitive to this detection. This behavior causes R2 to move away
from the hostile agent. While running away, R2 uses a set of heuristics based on the relative
location of the hostile agent and the near-by walls to select some hiding places that it hopes to be
able to reach before it is caught (recall that the hostile agent gives up if it cannot see R2). It then
plans a path to one of the hiding points, but using a very different strategy than during its initial
path planning. Here it is important that the planning proceed quickly, and that the plan get the
agent to its hiding place quickly. Issues of safety - at least with respect to possible ambush
points - no longer matter, while the ability to take short-cuts matters a great deal. Furthermore,
these short-cuts need to be sensible; i.e., they should not reduce the distance between R2 and the
hostile agent. Given these constraints, especially the need for a quick response, the hiding
planner relies on pre-computed (or ready-made) abstract plans. These abstract plans are
instantiated for all of the potential hiding positions. Some of these plans are immediately
rejected because their preconditions - which test for locations of different walls - are violated.

31n one set of systcatenic expcriments with this path planner, out of 370 scenarios attempted, 300 were planned
successful. Of the remaining 70 scenarios, 50 were terminated because of an imposed time-limit, and the remaining
20 failed because of a bug that has since been fixed.

3

lii I I I I I

two

No- L ----

I I I
woo -- ---- " - - -I

r - - - -- -i - --

100 I -
II

I I I

00 12i * 4 I o No 800 I

Figure 3: A short, safe path through fire space.

The remaining plans are then heuristically ranked, and the best one is selected.

Figure 4 depicts two of the abstract plans used for hiding. The arrows represent individual
steps in a plan, while the bold line represents a wall. As shown in the figure, the abstract plans
usually have a length of two to three steps.

i Hostile agent

Hostile agent Final hiding atc

* Curent Final hiding
* Location po

Current 7
Location

Figure 4: Two abstract hiding plans.

Each of the abstract plans have failure conditions associated with them. Based on simple
spatial reasoning, the failure conditions test if a plai* is doomed to fail. If so, that plan is
abandoned. The planner goes back to its set of abstract plans to create and execute a new plan.

Note that the abstract plans allow R2 to move very close to the wall. This is unlike the plans

4

generated by the initial planner, where the path moves through centers of regions to avoid
possible ambush points. Moving close to the walls allows R2 to take short cuts to the hiding
spot. But these short-cuts extract a price - the uncertainty in the movement of R2 can cause it to
bump into nearby walls. The problem becomes particularly severe if the walls have small
uncertainties in their lengths (as they do in some of our experiments.) To avoid this, R2 has a
built-in reactive wall-avoidance procedure, based on a potentialfield. A field is set up in which
the obstacles repel R2, thus allowing R2 to avoid bumping into walls. It is this reactive behavior
that causes the curved motion in R2's path execution. Note that in general, the potential-fields
approach is problematical due to the presence of local minima. However, by using it in
conjunction with the hiding planner, the problem of local minima is avoided.

Once the agent is safely hidden, it replans a path to its goal. (In many cases a good deal of
what is learned during the initial planning process can transfer to this replanning process.) If the
agent can now get safely to its goal, it will. However, if it once again meets up with the hostile
agent, it will again try to hide and then replan once more.

When considered as a whole, R2 demonstrates a close integration of reaction, planning,
execution, interruption, replanning, learning, search, use of heuristic knowledge, navigation, and
abstract spatial reasoning (about hiding places). In many ways the behavior is still rather simple
and special purpose - partially reflecting the fact that the opponent is itself quite simple - but it
does provide a broad system that can form the basis for increased sophistication. Some
weaknesses in the current design include R2's need for a reasonably accurate map (it cannot
survive if no map is available), its inability to learn the map, its lack of any concept of time, its
inability to form and use high-level strategies (other than its one current strategy of hiding), and
an incomplete integration of vision and planning.

Extending GridWorld to Multiple Soar Agents
The GridWorld environment and all of the agents that interact within it currently run within a

single Lisp image inside of a single Unix process.4 This has been adequate for running one Soar-
based agent amongst one or more Lisp-based agents, but not for running multiple Soar-based
agents - Soar is currently structured under the assumption that there would be only one
instantiation of it per Lisp image. Since the deployment of multiple Soar-based agents is critical
to our ability to study interactions - of either an antagonistic or cooperative nature - among
multiple intelligent agents, this became a high priority infrastructure problem to resolve.

Resolving this problem required making two basic design decisions: (1) whether the
interactions should be synchronous or asynchronous; and (2) how to balance flexibility and cost.
On synchrony, realistic environments - such as Simnet - clearly require asynchrony, but
synchrony makes experimental repeatability much easier to achieve. We therefore provided both
asynchronous and synchronous modes of operation. In the synchronous mode all agents have a
fixed time to "think" and all the changes to the world occur within one simulation step. In the
asynchronous mode, each agent thinks on its own and polls the environment and sends
commands to it at its own rate.

4Trhe original implementation from Hughes could be distributed over a set of Apple Macintoshes, but was not set
up for Unix systems.

5

On implementation, there are a variety of approaches that could be taken, including: (1)
repackaging Soar, (2) using a multi-process facility available within one of the versions of Lisp;
(3) using multiple Unix processes communicating via pipes; (4) using multiple machines
communicating via sockets; (5) using multiple processes on one or more machines
communicating via network file systems. After reviewing these options, we chose (5) because of
its ratio of cost to benefit. This option provides significant flexibility by transparently allowing
the environment and agents to be within a single process, within different processes on a single
machine, within processes on different machines on a local area network, or within different
processes on different machines on a wide area network. The key to providing this flexibility is
the availability of network file systems such as NFS and AFS that allow the local disk, a disk on
a local network, or a disk elsewhere on the intemet to be accessed in a uniform fashion. This
option also leads to a relatively low-cost solution. It requires no modifications of Soar (as
opposed to option (1)), and overall required a small amount of implementation effort.

The central idea behind the implementation is to use the file system as a simple message
passing mechanism, in order to allow the agents to run in different processes. Each agent sees
the file system as its own circular message buffer (mailbox). Messages are simply small files
with a standardized name. Each agent keeps a private table of messages sent to and received
from the rest of the agents, so it knows what messages to expect (filenames to look for) and to
send (filenames to create). Messages contain ready-to-evaluate lisp expressions or some other
data to be handled appropriately. The simulator is viewed as another agent acting as a server of
world states. At every step of the simulation, it makes public the state of the environment in a
shared file that is read by the rest of the agents. Each agent sends to the simulator commands
describing the actions to be performed in the world. Each message contains the command lisp
expression that is ready to evaluate by the simulator.

The Next Steps
During the next period we expect to focus on three key topics. The first topic is generalizing

the agent's spatial/navigational abilities to provide a more sophisticated and flexible facility.
This includes some or all of examining strategies for generalizing and integrating together R2's
two current planners, adding the ability to work flexibly with multiple planning criteria (such as
planning time, execution time, and safety) and multiple types of knowledge (such as partial or
complete map knowledge, verbal directions, and partial or complete models of the hostile agent's
location and/or behavior patterns), and the integration and use of external tools (such as A*
search programs and visibility-graph generators) to augment its internal capabilities. The second
topic is the construction of a Soar-based hostile agent. This will provide its own set of
challenges, as well as forcing R2 to increased levels of sophistication. The third topic is the
combination of multiple Soar-based versions of R2. This should raise issues of cooperation and
communication that do not exist in the single agent (or even one-on-one) situation.

6

